Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Infect Dis ; 23(1): 117, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2277160

ABSTRACT

BACKGROUND: Excessive use of antibiotics has been reported during the SARS-CoV-2 pandemic. We evaluated trends in antibiotic use and culture positive Gram-negative (GN)/Gram-positive (GP) pathogens in US hospitalized patients before and during the SARS-CoV-2 pandemic. METHODS: This multicenter, retrospective study included patients from 271 US facilities with > 1-day inpatient admission with discharge or death between July 1, 2019, and October 30, 2021, in the BD Insights Research Database. We evaluated microbiological testing data, antibacterial use, defined as antibacterial use ≥ 24 h in admitted patients, and duration of antibacterial therapy. RESULTS: Of 5,518,744 patients included in the analysis, 3,729,295 (67.6%) patients were hospitalized during the pandemic with 2,087,774 (56.0%) tested for SARS-CoV-2 and 189,115 (9.1%) testing positive for SARS-CoV-2. During the pre-pandemic period, 36.2% were prescribed antibacterial therapy and 9.3% tested positive for select GN/GP pathogens. During the SARS-CoV-2 pandemic, antibacterial therapy (57.8%) and positive GN/GP culture (11.9%) were highest in SARS-CoV-2-positive patients followed by SARS-CoV-2-negative patients (antibacterial therapy, 40.1%; GN/GP, pathogens 11.0%), and SARS-CoV-2 not tested (antibacterial therapy 30.4%; GN/GP pathogens 7.2%). Multivariate results showed significant decreases in antibacterial therapy and positive GN/GP cultures for both SARS-CoV-2-positive and negative patients during the pandemic, but no significant overall changes from the pre-pandemic period to the pandemic period. CONCLUSIONS: There was a decline in both antibacterial use and positive GN/GP pathogens in patients testing positive for SARS-CoV-2. However, overall antibiotic use was similar prior to and during the pandemic. These data may inform future efforts to optimize antimicrobial stewardship and prescribing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Inpatients
2.
Mycoses ; 66(6): 483-487, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2228006

ABSTRACT

BACKGROUND: Studies evaluating outcomes of COVID-19 patients with candidemia are limited and have only evaluated a single timepoint during the pandemic. OBJECTIVES: To compare the prevalence and outcomes associated with candidemia in patients based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) status and through the various pandemic waves (1 March 2020-5 March 2022). PATIENTS/METHODS: Multicentre, retrospective cohort analysis of data from 248 US medical facilities using the BD Insights Research Database (Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA). Eligible patients were adults aged ≥18 years who were hospitalised for >1 day, had a SARS-CoV-2 test and a positive blood culture for Candida spp. RESULTS: During the study time frame, there were 2,402,879 hospital admissions; 234,903 (9.7%) and 2,167,976 (90.3%) patients were SARS-CoV-2 positive and negative, respectively. A significantly higher rate of candidemia/1000 admissions was observed in SARS-CoV-2-positive patients compared to SARS-CoV-2-negative patients (3.18 vs. 0.99; p < .001). The highest candidemia rate for SARS-CoV-2-positive patients was observed during the Alpha SARS-CoV-2 wave (June 2020-August 2020) with the lowest candidemia rate during the Omicron wave. Hospital mortality was significantly higher in SARS-CoV-2-positive patients compared to SARS-CoV-2-negative patients with candidemia (59.6% vs. 30.8%; p < .001). When evaluating the mortality rate through the various pandemic waves, the rate for the overall population did not change. CONCLUSIONS: Our study indicates high morbidity and mortality for hospitalised patients with COVID-19 and candidemia which was consistent throughout the pandemic. Patients with COVID-19 are at an increased risk for candidemia; importantly, the magnitude of which may differ based on the circulating variant.


Subject(s)
COVID-19 , Candidemia , Adult , Humans , Adolescent , SARS-CoV-2 , Candidemia/epidemiology , COVID-19/epidemiology , Pandemics , Retrospective Studies , Hospitals , Morbidity
3.
Infect Control Hosp Epidemiol ; 43(10): 1317-1325, 2022 10.
Article in English | MEDLINE | ID: covidwho-2185255

ABSTRACT

OBJECTIVES: To evaluate the prevalence of hospital-onset bacteremia and fungemia (HOB), identify hospital-level predictors, and to evaluate the feasibility of an HOB metric. METHODS: We analyzed 9,202,650 admissions from 267 hospitals during 2015-2020. An HOB event was defined as the first positive blood-culture pathogen on day 3 of admission or later. We used the generalized linear model method via negative binomial regression to identify variables and risk markers for HOB. Standardized infection ratios (SIRs) were calculated based on 2 risk-adjusted models: a simple model using descriptive variables and a complex model using descriptive variables plus additional measures of blood-culture testing practices. Performance of each model was compared against the unadjusted rate of HOB. RESULTS: Overall median rate of HOB per 100 admissions was 0.124 (interquartile range, 0.00-0.22). Facility-level predictors included bed size, sex, ICU admissions, community-onset (CO) blood culture testing intensity, and hospital-onset (HO) testing intensity, and prevalence (all P < .001). In the complex model, CO bacteremia prevalence, HO testing intensity, and HO testing prevalence were the predictors most associated with HOB. The complex model demonstrated better model performance; 55% of hospitals that ranked in the highest quartile based on their raw rate shifted to a lower quartile when the SIR from the complex model was applied. CONCLUSIONS: Hospital descriptors, aggregate patient characteristics, community bacteremia and/or fungemia burden, and clinical blood-culture testing practices influence rates of HOB. Benchmarking an HOB metric is feasible and should endeavor to include both facility and clinical variables.


Subject(s)
Bacteremia , Fungemia , Humans , Fungemia/diagnosis , Fungemia/epidemiology , Benchmarking , Feasibility Studies , Bacteremia/diagnosis , Bacteremia/epidemiology , Hospitals
4.
Open Forum Infect Dis ; 9(11): ofac537, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2123133

ABSTRACT

Background: Antibacterial therapy is frequently used in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without evidence of bacterial infection, prompting concerns about increased antimicrobial resistance (AMR). We evaluated trends in AMR before and during the SARS-CoV-2 pandemic. Methods: This multicenter, retrospective cohort analysis included hospitalized adults aged ≥18 years with >1-day inpatient admission and a record of discharge or death from 271 US facilities in the BD Insights Research Database. We evaluated rates of AMR events, defined as positive cultures for select gram-negative and gram-positive pathogens from any source, with nonsusceptibility reported by commercial panels before (1 July 2019-29 February 2020) and during (1 March 2020-30 October 2021) the SARS-CoV-2 pandemic. Results: Of 5 518 666 admissions evaluated, AMR rates per 1000 admissions were 35.4 for the prepandemic period and 34.7 for the pandemic period (P ≤ .0001). In the pandemic period, AMR rates per 1000 admissions were 49.2 for SARS-CoV-2-positive admissions, 41.1 for SARS-CoV-2-negative admissions, and 25.7 for patients untested (P ≤ .0001). AMR rates per 1000 admissions among community-onset infections during the pandemic were lower versus prepandemic levels (26.1 vs 27.6; P < .0001), whereas AMR rates for hospital-onset infections were higher (8.6 vs 7.7; P < .0001), driven largely by SARS-CoV-2-positive admissions (21.8). AMR rates were associated with overall antimicrobial use, rates of positive cultures, and higher use of inadequate empiric therapy. Conclusions: Although overall AMR rates did not substantially increase from prepandemic levels, patients tested for SARS-CoV-2 infection had a significantly higher rate of AMR and hospital-onset infections. Antimicrobial and diagnostic stewardship is key to identifying this high-risk AMR population.

5.
BMC Infect Dis ; 22(1): 841, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119179

ABSTRACT

BACKGROUND: Bloodstream infections (BSIs) are an important cause of morbidity and mortality in hospitalized patients. We evaluate incidence of community- and hospital-onset BSI rates and outcomes before and during the SARS-CoV-2 pandemic. METHODS: We conducted a retrospective cohort study evaluating patients who were hospitalized for ≥ 1 day with discharge or death between June 1, 2019, and September 4, 2021, across 271 US health care facilities. Community- and hospital-onset BSI and related outcomes before and during the SARS-CoV-2 pandemic, including intensive care admission rates, and overall and ICU-specific length of stay (LOS) was evaluated. Bivariate correlations were calculated between the pre-pandemic and pandemic periods overall and by SARS-CoV-2 testing status. RESULTS: Of 5,239,692 patient admissions, there were 20,113 community-onset BSIs before the pandemic (11.2/1000 admissions) and 39,740 (11.5/1000 admissions) during the pandemic (P ≤ 0.0062). Corresponding rates of hospital-onset BSI were 2,771 (1.6/1000 admissions) and 6,864 (2.0/1000 admissions; P < 0.0062). Compared to the pre-pandemic period, rates of community-onset BSI were higher in patients who tested negative for SARS-CoV-2 (15.8/1000 admissions), compared with 9.6/1000 BSI admissions among SARS-CoV-2-positive patients. Compared with patients in the pre-pandemic period, SARS-CoV-2-positive patients with community-onset BSI experienced greater ICU admission rates (36.6% vs 32.8%; P < 0.01), greater ventilator use (10.7% vs 4.7%; P < 0.001), and longer LOS (12.2 d vs 9.1 d; P < 0.001). Rates of hospital-onset BSI were higher in the pandemic vs the pre-pandemic period (2.0 vs 1.5/1000; P < 0.001), with rates as high a 7.3/1000 admissions among SARS-CoV-2-positive patients. Compared to the pre-pandemic period, SARS-CoV-2-positive patients with hospital-onset BSI had higher rates of ICU admission (72.9% vs 55.4%; P < 0.001), LOS (34.8 d vs 25.5 d; P < 0.001), and ventilator use (52.9% vs 21.5%; P < 0.001). Enterococcus species, Staphylococcus aureus, Klebsiella pneumoniae, and Candida albicans were more frequently detected in the pandemic period. CONCLUSIONS AND RELEVANCE: This nationally representative study found an increased risk of both community-onset and hospital-onset BSI during the SARS-CoV-2 pandemic period, with the largest increased risk in hospital-onset BSI among SARS-CoV-2-positive patients. SARS-CoV-2 positivity was associated with worse outcomes.


Subject(s)
Bacteremia , COVID-19 , Cross Infection , Humans , Pandemics , SARS-CoV-2 , Bacteremia/epidemiology , Cross Infection/epidemiology , Retrospective Studies , COVID-19 Testing , COVID-19/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL